Helios induces epigenetic silencing of IL2 gene expression in regulatory T cells.

نویسندگان

  • Ian Baine
  • Samik Basu
  • Rachel Ames
  • Rani S Sellers
  • Fernando Macian
چکیده

Regulatory T cells (Tregs) play a critical role in maintaining immune tolerance and preventing autoimmune disease. Tregs express the transcription factor Foxp3, which acts as a master regulator of their differentiation and controls their capacity to suppress T cell responses. Tregs have an intrinsically anergic phenotype and do not produce IL-2 or proliferate upon stimulation ex vivo. Recent studies identified that Helios, a member of the Ikaros family of transcription factors, is expressed in Tregs. However, its specific function is not fully understood. In this study, we show that Helios regulates IL-2 production in Tregs by suppressing Il2 gene transcription. Loss of Helios in Tregs breaks their anergic phenotype and results in derepression of the Il2 locus, allowing Tregs to display increased baseline proliferation and to produce IL-2 following stimulation. Conversely, forced expression of Helios in CD4(+)Foxp3(-) T cells results in a loss of their normal ability to produce IL-2. Helios acts by binding to the Il2 promoter and inducing epigenetic modifications that include histone deacetylation. We also show that loss of Helios in Tregs results in decreased Foxp3 binding to the Il2 promoter, indicating that Helios promotes binding of Foxp3 to the Il2 promoter. Interestingly, the loss of Helios in Tregs also causes a decrease in suppressive capacity. Our results identify Helios as a key regulator of Il2 expression in Tregs, contributing to the maintenance of the anergic phenotype.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-204: Evaluation of FMR1 Gene Regulatory Region for The Epigenetic Mark of H3K9 Acetylation in Blood Cells of Patients with Diminished Ovarian Reserve Reffered to Royan Institute

Background: Diminished ovarian reserve (DOR) is a heterogeneous disorder causing infertility, characterized by a decreased number of oocytes and high FSH level, the genetic cause of which is still unknown. The association between FMR1 premutations(50-200 CGG repeats) and the premature ovarian failure( POF) disease has suggested that FMR1 gene acts as a risk factor for POF and recently for DOR p...

متن کامل

P-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction

Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...

متن کامل

A specific CpG site demethylation in the human interleukin 2 gene promoter is an epigenetic memory.

DNA demethylation plays a critical role in transcriptional regulation in differentiated somatic cells. However, there is no experimental evidence that CpG methylation in a small region of a genome restricts gene expression. Here, we show that the anti-CD3repsilon/CD28 antibody stimulation of human CD4+ T cells induces IL2 expression following epigenetic changes, including active demethylation o...

متن کامل

Human memory Helios- FOXP3+ regulatory T cells (Tregs) encompass induced Tregs that express Aiolos and respond to IL-1β by downregulating their suppressor functions.

FOXP3(+) regulatory T cells (Tregs) are critical regulators of self-tolerance and immune homeostasis. In mice and humans, two subsets of FOXP3(+) Tregs have been defined based on their differential expression of Helios, a transcription factor of the Ikaros family. Whereas the origin, specificity, and differential function of the two subsets are as yet a source of controversy, their characteriza...

متن کامل

القای سلول‌های دندریتیک تولروژن موشی با تنظیم کاهشی ملکول کمک تحریکی CD40 با استفاده از وکتور لنتی ویروس

Induction of Tolerogenic Murine Dendritic Cells by Downregulating the Co-stimulatory Molecule of CD40 Using Lentivirus Vector Mahmoodzadeh A1, Pourfatollah AA1, Karimi MH2, Moazzeni SM1 1Dept. of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran 2Transplantation Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran. Correspond Aut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 190 3  شماره 

صفحات  -

تاریخ انتشار 2013